

Typical Pulses for the 5 mm $CryoProbe^{TM}$ 500MHz and 600MHz

1.	Purpose	3
	Scope	
	Reference to Documents	
	Implementation	
	Introduction	
4.2	Pulse and power recommendations	4
	Notes	

Date of inspection: 13.02.2003 Signature: DAM/DMO Index: 01 Number: ZKAP0001

Date of release: 13.02.2003 Signature: DAM/DMO Page: 1 (6)

History:

<u>Index</u>	<u>Date</u>	<u>Changes</u>	<u>Visum</u>
00	10.01.2003	document created	DAM/DMO
01	13.02.2003	footnote 9 corrected	DAM/DMO

1. Purpose

Safe operation of a NMR probe requires that the power and the durations of RF pulses do not exceed specified values. This document provides values for safe operation of the 5mm TXI CryoProbeTM at 500MHz and 600MHz.

2. Scope

All 5mm TXI CryoProbeTM at 500MHz and 600MHz.

3. Reference to Documents

None.

4. Implementation

4.1 Introduction

The following table shows values for pulses, which provide safe operation¹⁾ with a Bruker 5mm CryoProbeTM.

The given values are related to the power handling of a 5mm CryoProbeTM. The effect of possible heating of the sample is not taken into account.

Please note that the given values provide safe operation only, when

- standard pulse programs from the Bruker pulse program library are used, and
- the repetition rate, which is about d1+aq has a minimum period of 1s.

Certain segments in a pulse sequence, like a spin lock or a decoupling sequence, are applied at a given RF power level. The maximum allowed power for those segments is expressed by the corresponding pulse length. Example:

¹H TOCSY spin lock: 200 msec @ 25 **ms**ec. This means that the maximum length of the spin lock sequence is 200 msec, and the allowed ¹H power level corresponds to a 90 deg. pulse width of 25 **ms**ec. A power level corresponding to a 90 deg. pulse which is shorter than 25 **ms**ec is not allowed.

Index: 01 Number: ZKAP0001 Page: 3 (6)

4.2 Pulse and power recommendations

Note: All values require a minimum repetition period d1+aq of 1sec ²⁾ Important: observe the separate notes on the following pages!

	5mm 500MHz TXI CryoProbe TM	5mm 600MHz TXI CryoProbe TM
¹ H		
hard pulse 3)	8.0 μsec	8.0 µsec
(max. length 360°)	·	·
hard pulse for lossy	Power level corresponding to 8.0 µsec	Power level corresponding to 8.0 µsec
samples	pulse for non-lossy sample	pulse for non-lossy sample
trim pulse p28 4)	2 msec @ 10 μsec	2 msec @ 10 μsec
TOCSY spin lock 5)	200 msec @ 25 μsec	200 msec @ 25 μsec
	400 msec @ 35 μsec	400 msec @ 35 μsec
ROESY spin lock	Up to CW for power level	Up to CW for power level
	corresponding to a 100 µsec pulse	corresponding to a 100 µsec pulse
WALTZ16 decoupling	Up to CW for power level	Up to CW for power level
during 13C-detection	corresponding to a 100 µsec pulse	corresponding to a 100 µsec pulse
DIPSI2-decoupling in	400 msec @ 50 μsec	400 msec @ 50 μsec
triple resonance		
¹³ C		
hard pulse 6)	15.0 µsec	15.0 µsec
(max. length 360°)		
trim pulse 5)	2 msec @ 25 μsec	2 msec @ 25 μsec
CC spin lock 5)	20 msec @ 25 μsec	20 msec @ 25 μsec
GARP decoupling 7)	140 msec @ 65 μsec	140 msec @ 55 μsec
selective pulses 8)	Q5: 320 µsec	Q5: 320 μsec
	Q3: 256 µsec	Q3: 256 µsec
	CHIRP: 2 ms @ 25 µsec	CHIRP: 2 ms @ 25 µsec
¹⁵ N		
hard pulse ⁶⁾ (max. length 360°)	40.0 µsec	40.0 μsec
WALTZ16 decoupling ⁷⁾	140 msec @ 200 μsec	140 msec @ 170 μsec
	·	·
CPMG T2 9)	250 msec @ 80 μsec (see warning ⁹⁾)	250 msec @ 80 μsec (see warning ⁹⁾)
2 H		
hard pulse	150 usec	150 usec
(max. length 360°)		
WALTZ16 decoupling	100 msec @ 250 μsec	100 msec @ 250 μsec
Z-Gradient	·	
Absolute max. current 10)	10 A	10 A
Max.overall length 11)	10 ms @ 10 A	10 ms @ 10 A

Table 1

Index: 01 Number: ZKAP0001 Page: 4 (6)

4.3 Notes

¹⁾ Although the values given do not necessarily define the actual limits, these conditions have been determined to provide safe operation and are valid unless superseded in whole or in part by (1) a more recent version of this document, (2) a factory document pertaining to the specific probe, or (3) written approval by BRUKER BioSpin AG. Operation in excess of the conditions given is not permitted and will void the warranty as it may result in a damage to the CryoProbe.

²⁾ Repetition period related isssues:

- a) In any case, the power level for a given pulse length (which must be equal or shorter than the specified pulse length value) must never exceed the power maximum given in Table 1.
- b) The pulse length values given in Table 1 are based on a repetition period of approximately 1sec. This defines and limits the average power to which the probe may be exposed. Operation with longer repetition periods is allowed without additional restrictions, provided the pulse lengths are still limited according to the values given in Table 1.
- 3) Non-lossy samples are assumed, such as organic solvents or water without salt.
- ⁴⁾ A number of inverse correlation experiments use the proton trim pulse *p*28, like the pulse program *invietgpsi* (XWINNMR up to version 3.1) or hsqcetgpsi (XWINNMR version 3.5). According to our experience this trim pulse is only rarely required. Verify if any improvement is necessary or obtained using this pulse.
- ⁵⁾ An experiment might contain a spin lock followed by a trim pulse. Note that the total length of spin lock and trim pulse must not exceed the value which is allowed for the spin lock only.
- $^{6)}$ When hard pulses are applied simultaneously on the 13 C and 15 N channel, the power on both, the 13 C and the 15 N channel, has to be reduced by 3 dB each.
- ⁷⁾ Simultaneous decoupling of ¹³C and ¹⁵N requires that reduced power is used on both channels. 3 dB less power should be used for both ¹³C and ¹⁵N. For simultaneous decoupling it is recommended to use optimised conditions for adiabatic decoupling on ¹³C.
- ⁸⁾ Pulses Q5 and Q3 are used in triple resonance experiments. The 2 ms CHIRP pulse is used in HSQC experiments for refocusing. For shaped selective pulses there are usually no restrictions, as long as the peak power of the shape does not exceed the power limit of a hard pulse. When using non-standard pulses, in addition to the peak power, it should be also verified that the averaged power over the pulse length does not exceed any of the power limits (compare to the listed limits for pulses with a comparable duration).
- ⁹⁾ The pulse sequence *invit2etf3gpsi* (XWINNMR up to version 3.1) or hsqct2etf3gpsi (XWINNMR version 3.5). The length of the CPMG element is d20 and should not exceed 250

Index: 01 Number: ZKAP0001 Page: 5 (6)

msec. The 180 deg. pulse is p30 at a power level p123, the pulse p30 should not be shorter than 160 µsec (180 deg. pulse, applied at a power level corresponding to a 90 deg. pulse of 80 µsec). The given value is true only, when the pulse p30 is part of a CPMG sequence with an inter-pulse delay of 900 µsec (expressed by d21*2 in the pulse sequence invit2etf3gpsi). Warning: Never apply the above power level and full uninterrupted duration in a spin lock sequence.

It is permissible to apply I_{max} for the listed maximum overall length T_{max} . The overall length of the gradients is the sum of all gradients applied during a repetition period.

A gradient sequence which has, within a repetition period, an overall length T_G which is longer than T_{max} , is still permissible if the maximum gradient current is reduced to I_G , according to the following equation:

$$I_G = I_{\text{max}} * \sqrt{T_{\text{max}}/T_G}$$

In a more general formulation (using the values of $I_{max} = 10$ A and $T_{max} = 10$ msec for clarity), for N pulses within any repetition (one second) period, the following condition must hold (I_{Gi} , T_{Gi} denote the current and duration of the i-th gradient pulse):

$$\sum_{i=1}^{N} T_{Gi} I_{Gi}^{2} \le T_{\text{max}} * (I_{\text{max}})^{2} = 10ms \cdot (10A)^{2} = 1000 \cdot msA^{2}$$

Examples:

- 1. For an overall gradient length of $T_G = 20$ ms within any one second period, the maximum gradient current I_G is 7.07 A.
- 2. A pair of gradient pulses, consisting of a first pulse with a current of 10 A and a length of 5 msec, and a second pulse with a current of 5 A and a length of 20 msec is just permissible.
- 3. A DC current of 1 A is just permissible.

Index: 01 Number: ZKAP0001 Page: 6 (6)

¹⁰⁾ The absolute max. gradient current I_{max} is listed in Table 1.