Results from a comparison of 3mm and 5mm NMR sample tubes with high salt concentrations in a cryoprobe.

by Murthy Karra

It is well known that the presence of salt in NMR samples is highly detrimental to the S/N gain in using cryogenically cooled probes[1]. A electrically conductive sample due to the presence of small conductive ions will add resistance to the NMR coil and as a result reduce the S/N ratio significantly. A recent paper [2] by Kelly and co-workers examined this issue and concluded that this reduction was a result of a combination of concentration and mobility of ions in solution. They suggest that by switching to buffers of lower mobility ions, the S/N can be recovered.

Another way to reduce the overall salt amounts is to reduce the sample volume and this was demonstrated in a presentation recently given by Dr. Detlef Moskau at Vanderbilt University. It was shown that the S/N loss can be recovered if the sample NMR tube is switched from a 5mm tube to a 3mm. This is due to a reduction in volume (hence a reduction of total salt amount) and a concomitant increase in S/N.

Dr. Moskau demonstrated this effect for a glucose solution at different salt concentrations and different sample tube sizes. As a follow-up, ${}^{1}H/{}^{15}N$ HSQC experiments were performed on a sample of Ubiquitin (${}^{15}N/{}^{2}H$ 70%, kindly provided by Susan Meyn) with different concentrations and NMR tube sizes.

Shown below are the results of Signal-to-Noise comparisons between 3mm and 5mm NMR sample tubes. The first histogram shows that even though the total amt of protein is reduced by a factor of 3, the S/N is fairly similar. The second experiment keeps the total amount of protein a constant and results in an average increase of 2.3 in S/N ratio.

Some comments:

1. The 3mm sample tube was placed in a 5mm tube with the outer annulus filled with D_2O . No effort was made to center the 3mm tube but no adverse effects on shimming (as monitored by a reference line) or line shapes were observed.

2. NMR samples usually contain 5-10% D2O for lock purposes which can now be eliminated with a corresponding increase in S/N of exchangeable amide protons.

3. The ¹H pulse widths show great improvements (\sim 40%) which is very useful to avoid excessive sample heating, better decoupling and spin-lock pulses.

4. The total amount of water is also reduced (by a factor of 3) and this helps to reduce radiation damping and better water suppression.

5. This results are valid only if you have a high salt concentration and a cryoprobe. 6. An increase in S/N ~ 2.3 corresponds to a time reduction of ~ 5.3 which would be very useful for all 3D and 4D NMR experiments (which use proton excitation and detection).

Spectometer = 800MHz with TCI Cyroprobe 1 H/ 15 N HSQC

Same concentration of Protein: Reduced Amount

NMR Tube Diameter(OD)	5mm	3mm
Sample	Ubiquitin	Ubiquitin
Isotope Labels	$15 \text{N/}^2 \text{H} (70\%)$	$^{15}\text{N/}^{2}\text{H}(70\%)$
Concentration	0.2mM	0.2mM
Salt Concentration	240mM Phosphate	240mM Phosphate
Sample Height	3.6cm	3.6cm
D_2O conc.	4%	4%
Sample Volume	500µL	165µL
pH	6.5	6.5
¹ H $\pi/2$ length	17.1µs	10.3µs
Expt. time	43mins	43mins
Sample Amt(total)	100 nanomoles	33 nanomoles

Spectometer = 800MHz with TCI Cyroprobe ${}^{1}\text{H}/{}^{15}\text{N}$ HSQC

NMR Tube Diameter(OD)	5mm	3mm
Sample	Ubiquitin	Ubiquitin
Isotope Labels	$^{15}\text{N}/^{2}\text{H}(70\%)$	$^{15}\text{N/}^{2}\text{H}(70\%)$
Concentration	0.15mM	0.45mM
Salt Concentration	325mM Phosphate	325mM Phosphate
Sample Height	3.6cm	3.6cm
D_2O conc.	10%	10%
Sample Volume	500µL	165µL
pH	6.5	6.5
¹ H $\pi/2$ length	17.2µs	10.3µs
Expt. time	22 mins	22 mins
Sample Amt(total)	75 nanomoles	75 nanomoles

Average S/N gain per unit weight protein ~ 2.3

1. Triebe, R.; Nast, R.; Marek, D.; Withers, R.; Baselgia, L.; Haberli, M.; Gerfin, T.; Calderon, P. In *40th Experimental Nuclear Magnetic Resonance Conference*; Orlando, FL, 1999; p 198.

2. Low-Conductivity Buffers for High-Sensitivity NMR Measurements, Kelly, A. E.; Ou, H. D.; Withers, R.; Dotsch, V.; J. Am. Chem. Soc.; 2002; 124(40); 12013-12019.