
RF power handling and more

May 2, 2014 1

What does "power handling" mean?

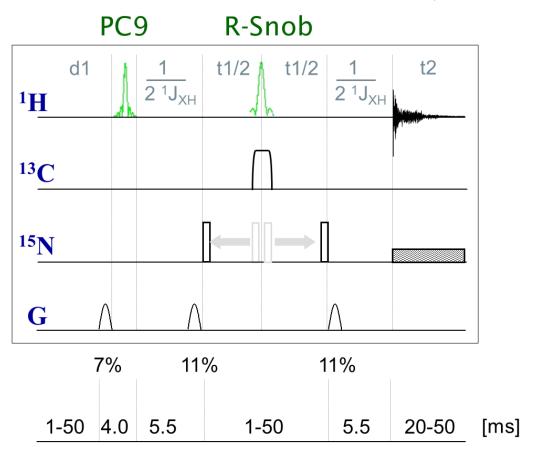
- 1. rf pulse deposit energy (heat) in the rf circuit and rf coils
- 2. Long pulses trains deposit more heat
- 3. Examples for long pulse trains:
 - CPD decoupling
 - Long CW irradiation: $T_1\rho$ experiments
 - Long CPMG sequence: T₂, REX

What might happen?

- 1. If deposited energy exceed specifications:
 - Excessive sample heating
 - Detuning of the rf circuit
 - Pulse width change: longer pulses which are difficult to control
 - Poor quality spectra

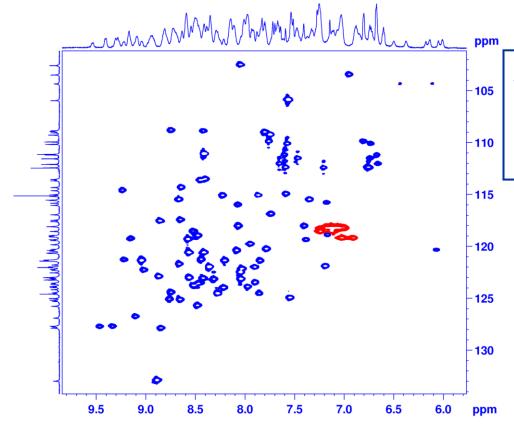
Will the CryoProbe be destroyed?

- 1. Power check of Topspin: ensures that the pulse voltage is not exceeded
 - Too high voltage WILL destroy the probe
 - Applying long pulses just close below the voltage limit are critical



Are there also be specifications for the allowed gradient power?

- 1. Yes
- 2. Why?
 - DC current is applied to a coil
 - The gradient coil behaves like a heating coil
 - DC current applied to long = long intense gradient pulses will overheat the wired
 - Wires will burn



Sofast-HMQC

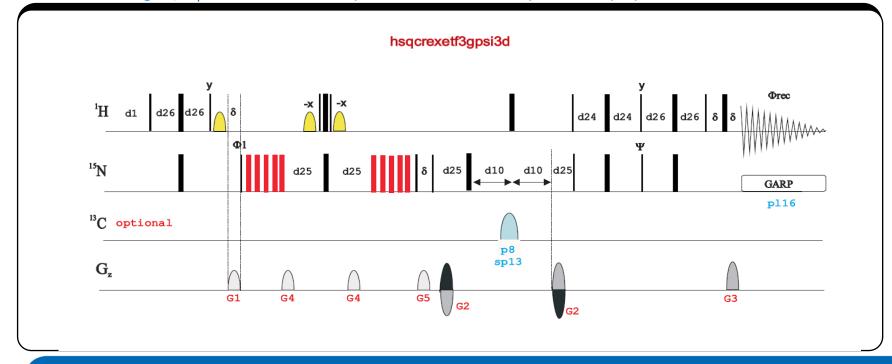
Sofast-HMQC 1mM Ubiquitin (¹³C/¹⁵N) in 90% H2O / 10% D2O **50** seconds acquisition time!

Acquisition Parameter:

AQ: 42 ms

D1: 8 ms

¹⁵N decoupling: γB₁of 892 Hz



¹⁵N-CPMG for relaxation dispersion experiment:

- 1. Duration (mixing time) is constant
- 2. Number of ¹⁵N pulses is varied in order to change the effective γB₁ field

Challenge:

- 1. Short ¹⁵N pulses to avoid off-resonance effects
- 2. High γB₁ field to allow experiment on small proteins/peptides

	5 mm 850 MHz TCI H-C/N-D CryoProbe TM
¹ H	
hard pulse ³⁾	8.0 μs
(max. length 1ms)	
hard pulse for lossy samples	Power level corresponding to 8.0 μs pulse for non-lossy sample
trim pulse p28 4)	1 ms @ 8 μs
	2 ms @ 11 μs
TOCSY spin lock 5)	120 ms @ 20 μs
	400 ms @ 35 μs
ROESY spin lock	Up to CW for power level corresponding to a 80 μs pulse
WALTZ65 decoupling during ¹³ C-	Up to CW for power level corresponding to a 80 μs pulse
detection	
DIPSI2-decoupling in triple	400 ms @ 35 μs
resonance	

May 2, 2014

	5 mm 850 MHz TCI H-C/N-D CryoProbe TM	
¹ H		
¹³ C		
hard pulse ⁶⁾	12.0 μs	
(max. length 1000°)		
trim pulse 5)	2 ms @ 22 μs	
CC spin lock 5)	40 ms @ 22 μs	
CPMG REX	150 ms @ 12 μs up to 2 kHz	
GARP4 decoupling (1)	250 ms @ 45 μs (> 142 ppm bandwidth)	
Adiabatic decoupling	500 ms @ 55 μs	
	Crp48,1.5,20.2 (> 170 ppm bandwidth)	
selective pulses ⁸⁾ G4: 290 μs / Q5: 226 μs		
	Q3: 180 μs	
	CHIRP: 2 ms @ 22 μs	

May 2, 2014

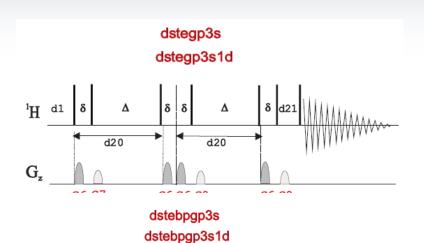
5 mm 850 MHz TCI H-C/N-D CryoProbe TM		
H		
¹³ C		
¹⁵ N		
hard pulse ⁶⁾ (max. length 1000°)	32.0 μs	
GARP4 decoupling 7)	125 ms @ 120 μs (> 134 ppm bandwidth) 250 ms @ 170 μs (> 95 ppm bandwidth) 1000 ms @ 350 μs (> 45 ppm bandwidth; sofast-HMQC)	
CPMG T2 ⁹⁾	250 ms @ 40 μs (see warning ⁹⁾) 400 ms @ 50 μs	
CPMG REX 10)	50 ms @ 40 μs up to 2 kHz 100 ms @ 40 μs up to 1 kHz	
T1 rho ¹¹⁾	100 ms @ 3 kHz 200 ms @ 1.5 kHz	

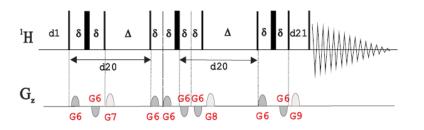
May 2, 2014 10

Gradient pulses

Z-Gradient		
Absolute max. current 10)	10 A	10 A
Max.overall length 11)	10 ms @ 10 A	10 ms @ 10 A

Note: some pulse sequences might have more gradients than you expect!


Experiment with bipolar gradients used for diffusion/DOSY experiments


May 2, 2014 11

Gradient pulses DOSY

Double STimulated Echo (DSTE) for convection compensation

- LED also
- 3 spoil gradients
- 4 diffusion gradients

- same, but with bipolar gradients:
- LED and 3 spoil gradients (G7, G8, G9)
- bipolar gradients for diffusion (G6), makes 8 diffusion gradients!!!

NOTE: gradient limitation for CryoProbes: maximum 10ms@10A

example 1. SMSQ10.100 gradients with 2ms length, 100%: 5 \times 2ms =10ms

example 2. SINE.100 gradients with 2ms length, 100%: 8 x 2ms x 0.67 = 10.72ms

because the area of a sine curve is 67% of the area of a square