Fast Methods

Detlef Moskau

Content

Covariance

Non-uniform Sampling

APSY / Projection Spectroscopy: brief introduction

Sofast experiments

Best triple resonance experiments

Accelerate NMR experiments

Reduced number of Increments in nD experiments:

- Non linear sampling
- Reduced dimensionality
- Projection Reconstruction
- Spectrum folding
- Covariance

Slice selection:

- Single scan

Enhanced Repetition rate:

- Rapid Pulsing

Sofast-HMQC, BEST triple resonance experiments

Pseudo-2D Representation of multiple selective 1D-experiments:

APSY

- Hadamard

Combine several experiments in one experiment:

- COCONOESY
- Multiple Receiver

Accelerate NMR experiments

Reduced number of Increments in nD experiments:

- Non uniform sampling NUS
- APSY
- Covariance

Enhanced Repetition rate:

- Rapid Pulsing

Sofast-HMQC, BEST triple resonance experiments

Covariance Processing Method

Covariance

Principle

After FT in direct dimension:

Compare all columns (indirect dimension)

For columns which are similar: transfer info of frequency in direct dimension to the indirect dimension

No further FT applied

Advantance: enhanced resolution in indirect dimension

Covariance

Covariance

NUS *Non Uniform Sampling*

MultiDimensionl Decomposition (MDD)

MDD-NMR

Orekhov et al.

Maximum Entropy (MaxEnt)

Rowland Toolkit

Forward Maximum Entropy

Wagner et al.

Hoch et al.

Azara (CCPN)

Laue et al.

Multidimensionl Fourier Transformation (MFT)

MFT

Kozminski et al.

Non Uniform Sampling

• NUS-Paket now shows seamless integration with GUI

- ... and is available on all platforms (first version was only for Linux)
- New **Compressed Sensing** gives significant speed-up
 - V. Orekhov K. Kazimierczuk
 - W. Mausshardt W. Bermel

3D (t₁t₂ plane)

BRUKER

HNCO - 25% sparse (nussampler)

Ubiquitin

Ubiquitin

HSQC

Non Uniform Sampling

HSQC

20mM Hymenistatin

20mM Hymenistatin

non uniform sampling Homonuclear Experiments: DQF-COSY

traditional 256 points

non uniform sampling Any further applications?

NOESY Side diagonals due to temperature oscillation of aircon

non uniform sampling Any further applications?

APSY *High Precision, Fast and Automated Projection Spectroscopy*

BRUKER

What is 'projection spectroscopy'?

Multiple viewpoints '*projection angles*' are required

BRUKER

What is 'projection spectroscopy'?

- 1. Use different viewpoints to evaluate content of a n-D space: *projections*
- 2. *Reduction of dimensionality:* example: 2D-projections for description of a n-D space.

What is 'projection spectroscopy'?

Multiple viewpoints 'projection angles' are required

Consequence of *Reduction of dimensionality:* Information of additional dimensions is lost

Consequence of *Reduction of dimensionality:* Information of additional dimensions is lost

Consequence of *Reduction of dimensionality:* Information of additional dimensions is lost

Consequence of *Reduction of dimensionality:* Shift information of reduced dimensions is lost, but:

- Shift information is coded as a distance
- By additional splitting of single peaks

Recording of projection spectra

Example: 3D HNCO experiment

single evolution during t_1 only: single evolution during t_2 only: simultaneous evolution during t_1 and t_2 : 2D H,C plane ($\alpha = 90^{\circ}$)

2D H,N plane ($\alpha = 0^{\circ}$)

2D H,NC plane ($\alpha = n^{\circ}$)

What can be done with the projections?

- 1. Reconstruct a n-dimensional spectrum:
 - projection reconstruction
- 2. Reconstruct a n-dimensional peak list:
 - APSY

1. step: two projections are measured and selected arbitrarily: e.g. 0° and -60°

1. step: two projections are selected arbitrarily: e.g. 0° and -60°

Intersection of subspaces creates candidate points

2. step: additonal projections included: e.g. 0°, -25° and 45°

Calculate additional intersections/subspaces

3. step: number of intersecting subspaces (*support S*) is calculated for each candidate point

3. step: *support S:* high values result in high ranking

APSY experiments and software

6D sequential H_i - N_i - CO_{i-1} - CA_{i-1} - N_{i-1} - H_{i-1}

APSY experiments and software

Key Features:

• **High Precision:** Peak lists of high precision from an optimum number of projections.

Sequential assignment of [¹³C,¹⁵N]-ubiquitin using the peak list from a 6D-APSY-HNCOCANH experiment.

APSY experiments and software

APSY: peak list

•High Precision: Visual inspection of results.

2D peak lists calculated from the 6D-APSY-HNCOCANH experiment can be displayed on any projection.

Combining two fast methods: BEST Triple Resonance Experiments & NUS

So-Fast HMQC: Principles

P. Schanda and B. Brutscher, J. Am. Chem. Soc., 127, 8014, 2005

A. Ross, M. Salzmann and H. Senn, J. Biomol. NMR, 10, 389,

1997

Rapid Pulsing:

- Experiment is based on very fast repetition rate
- 2. Extreme cases: D1 = 1ms
- 3. Selective excitation of NH protons only, keep C_{aliphatic} along +Z axis
- Enhanced T₁ relaxation of NH protons
- 5. Use of the Ernst angle:

Selective pulse on NH protons: 120° - 180° = -60°

So-Fast HMQC: 2 mM Ribonuclease (TCI Cryoprobe 600 MHz)

So-Fast HMQC

- Allows to study very rapid phenomena (protein folding)
- Increase the speed for HTS

• Important RF power deposited in the probe

• Required good SNR

BEST triple resonance experiments

• **BEST** triple resonance:

- Optimized for enhanced relaxation behavior of NH (bandselective excitation for amide protons, leaving H2O & aliphatics along the Z-Axis)
- Reduced relaxation delay:
 - D1 down to **200-1ms** instead of typical 1.5-1.0 s

BEST Triple resonance experiments

BEST-HNCA

BEST triple resonance experiments

3D-HNCO acquired with high resolution:

td 2k x 96 x 256 ns = 2

"Classical 3D HNCO" d1 1.0 sec full sampling

997 min

1

3D BEST-HNCO d1 10 ms full sampling

186 min

1/5

3D BEST-HNCO NUS d1 10 ms 10% sparse sampling

17 min

1/50

BEST triple resonance experiments

High duty cycle for 15N decoupling

• Optimize decoupling with GARP-4 to achieve >48 ppm bandwidth:

800 MHz	700 MHz	600 MHz	500 MHz
350us	400us	466us	560us

800 MHz BEST-HNCO traditional / NUS

www.bruker.com

© Copyright Bruker Corporation. All rights reserved.