Carbon-detection in biomolecular NMR: techniques and applications

Dr. Detlef Moskau NMR Applications and Analytical Services, Bruker BioSpin Switzerland

Literature: ¹³C detected 2D/3D bio-NMR Early publications

DQC	*	B.H. Oh, W.M. Westler, P. Darba & J.L. Markley, Science 240, 908-910 (1988)
HCC-TOCSY		Z. Serber et al., J. Am. Chem. Soc. 122, 3554-3555 (2000) Z. Serber, C. Richter & V. Dötsch, ChemBioChem 2, 247-251 (2001)
COSY	*	I. Bertini, YM. Lee, C. Luchinat, M. Piccioli & L. Poggi, ChemBioChem. 2, 550-558 (2001)
ct-COSY	*	T.E. Machonkin, W.M. Westler & J.L. Markley, J. Am. Chem. Soc. 124, 3204-3205 (2002)
mq-CaCO mq-CON	*	M. Kostic, S.S. Pochapsky & T.C. Pochapsky, J.Am. Chem. Soc. 124, 9054-9055 (2002)
TOCSY	+	A. Eletsky, O. Moreira, H. Kovacs & K. Pervushin, J. Biomol. NMR 26, 167-179 (2003)

Motivation for ¹³C-detection

- shorter pulse sequences, less relaxation
- high chemical shift dispersion
- detection of non-protonated carbons
- But: Isn't the sensitivity of ¹³C too small?

Motivation for ¹³C-detection

- shorter sequences, less relaxation
- high chemical shift dispersion
- detection of non-protonated carbons
- But: Isn't the sensitivity of ¹³C too small?

Answer: not necessarily

• ¹³C direct detection is a complementary tool

When do we need ¹³C-Nuclei detection?

(1) When we have low resolution for ^{1}H

• (partially) unfolded proteins

(2) When we face problems with ¹H linewidth (relaxation)

- High Molecular Weight (perhaps)
- Exchange of NH (or Proline residues!)
- Paramagnetism: Paramagnetic relaxation rate enhancements

$$R^{I}_{(1,2,\text{Curie})} \propto \gamma_{I}^{2} \cdot \gamma_{S}^{2} \cdot f(\tau_{c}, \omega)$$

 $(\gamma_{13C})^2 \sim (\gamma_{1H})^2 / 16$

Protonless High Resolution Bio-NMR Why no protons?

Bermel, Bertini, Felli, Kümmerle, Pierattelli, JACS, 2003

Details: pulse sequences

Dötsch et al. J. Am. Chem. Soc. 2000, 112, 3554.

Details: pulse sequences

CON, multiple quantum ,HMQC'

Details: pulse sequences

Details: pulse sequences Virtual homonuclear decoupling: IPAP

MQ-HACACO with direct ¹³C-detection

5mm TCI CryoProbe[™] ¹H{¹³C, ¹⁵N} 800MHz

0.5 mM ¹³C/¹⁵N Chymotrypsin Inhibitor 2 (Cl2) pH 4.2, 1% D2O Courtesy by Flemming M. Poulsen

Protonless High Resolution Bio-NMR ¹³C-¹⁵N heteronuclear correlation spectrum

BRUKER

Protonless High Resolution Bio-NMR ¹³C-¹⁵N heteronuclear correlation spectrum

Applications with ¹³C-Detection Reducing Experiment time

- Protonless?
 - ¹H start ¹³C detect!
- Longitudinal relaxation enhancement
 - HN-transfer: BEST approach
 - HC-transfer: H-flip approach
- Combine with other fast acquisition methods:

Projection reconstruction, non-uniform sampling, ...

¹³C direct detection – speeding up BEST approach

- Selective ¹H-excitation of NH protons only
 - Aliphatic protons act as pool for relaxation

¹³C direct detection – speeding up H-flip approach

- Non-selective ¹H-excitation of all protons.
- Selectively flip-back protons not required to Z-axis
 pool for relaxation

¹³C direct detection – speeding up

Definitions

Term	initial excitation
¹³ C-start	¹³ C
'H ^a -start	'H non-selective
¹ Η ^α -flip	¹ H ^α selective

¹³C direct detection – speeding up

Relaxation-optimized CT-(H)CACO-IPAP

CT-(H)CACO IPAP

ns = 1td 512 x 360

C/N labeled 1mM ubiquitin

700 MHz CP-TXO

Relaxation-optimized CT-(H)CAC)-IPAP

CT-(H)CACO IPAP

ns = 1 td 512 x 360 D1=1ms exp time: 55sec!

C/N labeled 1mM ubiquitin

700 MHz CP-TXO

Variants of experiments

Different implementations for same experiment are available

- Standard no virtual decoupling (no IPAP etc.)
- IPAP virtual decoupling via IPAP
- S3 virtual decoupling via S3 spin state selection
- CT constant time, avoids evolution of homonuclear couplings during t₁ evolution
- RE Relaxation optimized (H-flip)
- RC Determination of ¹J(XY)

Sensitivity of CACO pulse sequences

Pulse programs Topspin examples

c_caco
c_can_mq
c_con_sq
c_canco_3d
c_ccflopsy16
c_ccflopsy16_ct
c_ccnoesy
c_cosy
c_cosy_ct

c_hcaco_ 3d c_hccflopsy16_3d c_hcacon_ iare c_hcacon_ iare c_hcacon_ iarc_nc

- h: H-start (¹H-¹³C INEPT)
- mq: HMQC version (multiple quantum)
- sq: HSQC version (single quantum)
- ct: contant time evolution
- ia: IPAP
- re: H-flip (relaxation enhanced)
- rc: determination of coupling constants
- nc: ¹J(NC' coupling)

Thank you very much...

CERM

Ivano Bertini, Roberta Pierattelli & others

Bruker Application Department:

Helena Kovacs, Rainer Kümmerle, Wolfgang Bermel, Sergio Gil-Caballero

Innovation with Integrity