

Pulse Programming

Elements of Pulse Programs

Trim Pulses

Flip back pulses

Shaped pulses in triple resonance experiments

Trim Pulses

Flip back pulses

Shaped pulses in triple resonance experiments

BRUKER

Purge pulses (spin-lock or trim pulses)

selectively dephase coherences orthogonal to the RF-field (I_x, I_z) while preserving coherences locked along the RF-field (I_v)

experiments: ¹H TOCSY, HSQC-type inverse, triple resonance experiments,...

- **power levels: pl10** for ¹H TOCSY, others **pl1** (same as hard proton pulses!!, but not more than power level corresponding to 10 μs 90 degree pulse!!)
- purge pulses:p17 (=< 2.5ms); p28 (=< 1.0ms, if pl1 set as described above)</th>Note: make sure that the probe can stand the rather high powerlevel used for the trim pulse. Otherwise the probe is damaged!!

Selective dephasing of solvent signal by RF pulses BRUKER

Purge pulses (spin-lock- or trim pulses) p28 = < 1.0ms @ pl1 (max. level of pl1 corresponding to $10\mu s$ 90 degree pulse)! use p28 only if you have a solvent signal to suppress, try without (p28 = 0.1ms) for inverse probeheads with latest design.

TOCSY experiment: effect of trim pulses

Problem:

The two trim pulses are acting as B_1 -gradients.

First TP is defocussing residual water in inhomogeneous regions. This water has not been presaturated.Second TP is refocussing that water.

Solution:

remove first trim pulse

TOCSY experiment: effect of trim pulses

Keeping the water magnetization along the +z axis

Common element in heteronuclear correlation experiments to improve WATERGATE

- flip-back pulses throughout the pulse sequence (prior to WATERGATE) to re-align transverse water magnetization along +z axis
- Pulse sequence names: ...fp... with the following parameters:
 selective on-resonant flip-back pulse:
 shape of the flip-back pulse:
 power of the flip-back pulse:
 power of the flip-back pulse:
 spnam1 sinc or rectangular pulse
 sp1 calculate selective 90° pulse in stdisp (might be optimized in gs-mode)

HSQC with water-flip-back pulses & WATERGATE:

Trim Pulses

Flip back pulses

Shaped pulses in triple resonance experiments

Shaped pulses in Triple Resonance Experiments

ÚKÉR

Time reversed 90° shaped pulses

(p21 ph1):f3 (p13:sp2 ph3):f2 4u (p14:sp5 ph1):f2 **DELTA3** (p14:sp3 ph1):f2 4u (p14:sp5 ph1):f2 **DELTA3** (p13:sp8 ph2):f2 time reversed 4u 30u fq=cnst23(bf ppm):f2 (p13:sp2 ph4):f2 d28 (p14:sp3 ph1):f2 d28 (p13:sp8 ph2):f2 time reversed d0 (center (p14:sp7 ph1):f2 (p22 ph8):f3) d0

(p14:sp3 ph1):f2 DELTA4 (p14:sp7 ph1):f2 4u (p13:sp2 ph9):f2 d28 (p14:sp3 ph1):f2 d28 (p13:sp8 ph10):f2 time reversed 4u 30u fq=cnst21(bf ppm):f2 (p13:sp2 ph2):f2 DELTA3 (p14:sp5 ph1):f2 4u (p14:sp3 ph1):f2 DELTA3 (p14:sp5 ph1):f2 4u (p13:sp8 ph1):f2 time reversed (p21 ph1):f3

Time reversed 90° shaped pulses

UKER

Simultaneous 180° shaped pulses

HNCOCA

(p14:sp3 ph1):f2 **4**u (p14:sp5 ph1):f2 DELTA3

Simultaneous 180° shaped pulses

HNCOCA

(p14:sp5 ph1):f2 (p14:sp3 ph1):f2 **4**u (p14:sp5 ph1):f2 DELTA3

Single 180° shaped pulses

HNCOCA

(center (p14:sp7 ph1):f2 (p22 ph8):f3)

Refocused phase evolution during t₁:180° shaped pulses

HNCOCA

d0 (center (p14:sp7 ph1):f2 (p22 ph8):f3) **d0** (p14:sp3 ph1):f2 **DELTA4** d0*2+larger(p14,p22)-p14 (p14:sp7 ph1):f2

- Pairs of 90° pulses: final pulse is time-reversed
- Compensation for phase evolution during t_1 : spin-echo
- BS compensation for 180° pulses: pair of 180° pulses