

DOSY: Tips and Tricks

Detlef Moskau (2008)

DOSY: where is the challenge?

- Main problems with DOSY are:
 - 1. Compounds are not well resolved
 - 2. Signals are not well separated ('wings', 'smilies',...)
 - 3. Diffusion rates are wrong even when gradient calibration has been done
- Reasons:
 - 1. Compounds are not well resolved:
 - Differences in the diffusion rates are too small
 - Other transportation effect are overlaid with diffusion
 - Other transportation effects are larger that the diffusion
 - 2. Signals are not well separated:
 - Improper experiment conditions
 - DOSY processing parameters and preparation of data for DOSY calculation

DOSY: where is the challenge?

- Compounds are not well resolved:
 - 1. DOSY is a diffusion experiment
 - 2. All precautions for sample preparation etc. which are valid for diffusion experiments also apply for the DOSY experiment

Quinine: DOSY and sample rotation:

Non spinning

Spinning

J. Magn. Reson. **2001**, 48,153, Parella et. al.

Quinine: DOSY and sample rotation:

Spinning

Non spinning

• Quinine: DOSY at two different gas flows:

525 l/h

670 l/h

 Quinine: DOSY at two different gas flows:

525 l/h

670 l/h

Doped water with ¹³C-MeOH:
 DOSY

Typical 'smilies' are visible

• Doped water with ¹³C-MeOH:

DOSY 90° composite pulses

Spatial selective excitation in B₁-homogeneous region

Allows reduction of smilies

red: standard LEDBPGP2S

blue: CP- LEDBPGP2S

Doped water with ¹³C-MeOH:

DOSY 90° composite pulses

Spatial selective excitation in B₁-homogeneous region

Allows reduction of smilies

red: xf2, abs2 and dosy2d

blue: xf2, abs2, deconvolution

and dosy2d

The AU program deconxf2.dmo

```
TIMES(td1)
   i=i+1;
   DATASET(name, expno save, procno save, disk, user);
   RSR(i, 1000);
   DATASET(name, expno, 1000, disk, user);
   DATASET2(name, expno, 999, disk, user);
   GDCON:
   DATASET(name, expno, 999, disk, user);
   HT;
   WSR(i,procno save,expno,name,user,disk);
END;
```


- DOSY spectrum, mixture of four sugars
- Experiment conditions:
 - 40 mm filling height
 - LED sequence with composite pulses
 - Processing: xf2, abs2 dosy2d

Can't we do a better job???

LWF: broadening in diffusion dimension, reduces truncation artifacts

14

SpiSup: broadening in chemical shift dimension, reduces tails

SpiSup and LWF: optimized for sample

- DOSY spectrum, mixture of four sugars
- Experiment conditions:
 - 40 mm filling height
 - LED sequence with composite pulses
 - Processing: xf2, abs2 dosy2d
 - And:

2D-deconvolution! Peak list might be cleaned up first.....

Summary Tips and Tricks: Sample and VT

- Run the DOSY experiment under conditions which exclude or at least minimize any additional transport effect beside diffusion.
- Transport effect could be:
 - Convection:
 - Use sample filling height 40 mm
 - Reduce temperature for low-viscosity solvents
 - Reduce temperature gradient (higher VT gasflow)
 - Use small diameter tubes.
 - Try with sample rotation
 - Sample vibrations:
 - Reduce gasflow
 - Do not use the blue spinner

Summary Tips and Tricks: Pulse Sequence

- The DOSY 'wings' seems to be generated at the inhomogeneous region of the sample:
 - Do not record / excite inhomogeneous region:
 - Use composite 90° pulses

Summary Tips and Tricks: Processing

- The DOSY 'wings' can be reduced by deconvolution:
 - Optimized LWF and SPISUP together with using different window functions
 - 1D deconvolution of rows prior DOSY calculation:
 - Fast for simple spectra
 - Time consuming for complex spectra
 - Quality of the DOSY is given by the quality of the deconvolution
 - 2D deconvolution of the DOSY spectrum:
 - Nice spectra, but:
 - Relies on quality of peak list