

¹³C-detection in Bio-NMR: An Introduction

+ shorter sequences, less relaxation

+ high chemical shift dispersion

+ detection of non-protonated carbons

Examples for simple experiments

Overcoming the problem with ¹³C, ¹³C homonuclear coupling:

Homonuclear decoupling IPAP technique

Assorted examples

(1) When we have low resolution for ¹H

• (partially) unfolded proteins

(2) When we face problems with ¹H linewidth (relaxation)

- High Molecular Weight (perhaps)
- Exchange of NH (or Proline residues!)
- Paramagnetism: Paramagnetic relaxation rate enhancements

Literature: ¹³C detected 2D/3D bio-NMR

DQC	*	B.H. Oh, W.M. Westler, P. Darba & J.L. Markley, Science 240, 908-910 (1988)
HCC-TOCSY		Z. Serber et al., J. Am. Chem. Soc. 122, 3554-3555 (2000)
		Z. Serber, C. Richter & V. Dötsch, ChemBioChem 2, 247-251 (2001)
COSY	*	I. Bertini, YM. Lee, C. Luchinat, M. Piccioli & L. Poggi, ChemBioChem. 2, 550-558 (2001)
ct-COSY	*	T.E. Machonkin, W.M. Westler & J.L. Markley, J. Am. Chem. Soc. 124, 3204-3205 (2002)
mq-CaCO mq-CON	*	M. Kostic, S.S. Pochapsky & T.C. Pochapsky, J.Am. Chem. Soc. 124, 9054-9055 (2002)
τοςςγ	+	A. Eletsky, O. Moreira, H. Kovacs & K. Pervushin, J. Biomol. NMR 26, 167-179 (2003)
	*	paramagnetic protein + paramagnetic relaxation agent

Dötsch et al.

Stern,

Serber, Richter, Moskau, Boehlen, Gerfin, Marek, Häberli, Baselgia, Laukien, Hoch & Dötsch, J. Am. Chem. Soc. 2000, 112, 3554.

HACACO with ¹³C-detection and HCC-TOCSY with ¹³C-detection

Pervushin et al.

#1 TROSY-HNCA, TROSY-HNCO and MQ-HACACO (¹³C-obs.)

Pervushin & Eletsky, J. Biomol. NMR, 25 (2003) 147-152

#2 TROSY-HNCO, TROSY-HN(CA)HA, MQ-HACACO (¹³C-obs.) Hu, Eletsky & Pervushin J. Biomol. NMR, 26 (2003) 69-77

•Set of experiments with both, ¹H and ¹³C-detection

•Best sensitivity therefore required for both, ¹H and ¹³C

Strategies for backbone assignment

MQ-HACACO with direct ¹³C-detection

Pervushin & Eletsky, J. Biomol. NMR, 25 (2003) 147-152 35%-²H,¹³C,¹⁵N-labeled chorismate mutase 44 kDa

¹³C-detection in biomolecular NMR spectroscopy

¹³C,¹³C-TOCSY

2mM ¹⁵N,¹³C labeled ubiquitin

Exp. time 11 min

Jüergen Schleucher, Umea University

¹³C-detection in biomolecular NMR spectroscopy

¹³C,¹³C-TOCSY

100uM ¹⁵N,¹³C labeled calmodulin

Exp. time 11 h

Raphael Brüschweiler Clark University

CryoProbe TCI 800MHz

AV800, TCI800 CryoProbe 1mM Ubiqitin, 13C{1H, 15N}-TOCSY NS=32 exp time 7h 30min

CryoProbe TCI 800MHz

AV800. TCI800 CI

CryoProbe TCI 800MHz

AV800. TCI800 CI

Bystrov, Progress in NMR spectroscopy, 1976

maximum entropy:

Z. Serber et al., J. Am. Chem. Soc. 122, 3554-3555 (2000)
N. Shimba, A.S. Stern, C.S. Craik, J.C. Hoch & V. Dötsch, J. Am. Chem. Soc. 125, 2382-2383 (2003)

virtual decoupling

K. Pervushin & A. Eletsky, J. Biomol. NMR 25, 147-152 (2003)

L. Duma, S. Hediger, A. Lesage & L. Emsley, J. Magn. Reson. 164, 187-195 (2003)

I. Bertini, I.C. Felli, R. Kümmerle, C. Luchinat & R. Pierattelli, J. Biomol. NMR 30, 245-251 (2004)

W. Bermel, I. Bertini, L. Duma, I.C. Felli, L. Emsley, R. Pierattelli

& P.R. Vasos, Angew. Chem. Int. Ed. 44, 2-5 (2005)

bandselective homodecoupling

W. Bermel, I. Bertini, I.C. Felli, R. Kümmerle & R. Pierattelli, J. Am. Chem. Soc. 125, 16423-16429 (2003)

,Decoupling[•] ¹³C, ¹³C scalar couplings

Homonuclear decoupling: real decoupling

IPAP and double IPAP method: virtual decoupling

,Decoupling[•] ¹³C, ¹³C scalar couplings

Homonuclear decoupling: real decoupling

IPAP and double IPAP method: virtual decoupling

¹³C-Homodecoupling

Vögeli, Kovacs, Pervushin J. Biomol. NMR 31 (2005) 1-9

¹³C-homodecoupling profiles - protein

Bandselective ¹³C homodecoupling

COCA-MQ without (A) and with (B) bandselective homodecoupling

XX: 20% more than decoupled region

zoomed region of shape:

Position and Intensity of harmonics is given by Fourier Series

for equal intensity and sign of each element:

$$\delta/\Delta + 2 / \pi * \begin{bmatrix} -\sin(\pi \delta/\Delta) & \cos(\pi x/\Delta) \\ + 1/2 & \sin(2\pi \delta/\Delta) & \cos(2\pi x/\Delta) \\ - 1/3 & \sin(3\pi \delta/\Delta) & \cos(3\pi x/\Delta) \\ + \dots \end{bmatrix}$$

Decoupling harmonics during HD

Can we make use of harmonic sidebands?

(ppm)

Can we make use of harmonic sidebands?

band selective decoupling of NH- and γ -protons with G3 pulse

25mM cyclosporin A in C6D6, region of α -protons selected with digital filter, DQD

Take care of position of harmonic sidebands!

Example: HD on C- α , observation of CO, 800 MHz:

SW: 60 ppm, DW = 41.2 usec: •sideband at 1 / 41.2us = 24 kHz = 120 ppm •¹³C HD offset: 54 ppm •First harmonic at 54+120 = 174 ppm

Artifacts: decoupling sidebands

Bandselective decoupling: pulse programming Example with sideband suppression: zghc.2

1 ze d12 pl24:f2 2 d11 do:f2 3m 3 3m 4 d1 *d20* cpdngs2:f2 p1 ph1 go=2 ph31 hd:f2 d11 do:f2 wr #0 3m id20 zd lo to 3 times 4 3m rd20 lo to 4 times 15

controlled delay of start position of HD CPD decoupling sequence using shaped pulses, amplifier blanking is closed, no pulse

amplifier gating created by HD-command

,Decoupling[•] ¹³C, ¹³C scalar couplings

Homonuclear decoupling: real decoupling

IPAP and double IPAP method: virtual decoupling

IPAP = In-Phase Anti-Phase

1.Two datasets are recorded: CC multiplets are In-Phase CC multiplets are Anti-Phase

2. Linear combination of those two datasets

Double IPAP:

IPAP scheme applied to two coupling constants Four datasets are recorded

Note:

Identical coupling constants assumed longer pulse sequence, reduced sensitivity due to relaxation **IPAP**

The DIPAP approach

Set-up on ¹³C-¹⁵N labeled Alanine

Bermel W., Bertini I., Duma L., Felli I.C., Emsley L., Pierattelli R., Vasos P.R., Angew. Chem., 2005, 44, 3089-3092

The IPAP / DIPAP approach

In fully labeled proteins:

IPAP approach allows CO-detected experiments (1/2J) S3E likewise IPAP for CO-detected experiments (1/4J)

DIPAP approach allows $C\alpha$ detected experiments

CON, multiple quantum

,HMQC'

CON, single quantum

,HSQC'

CON, multiple quantum, IPAP for decoupling of $J_{C'C\alpha}$

CON, multiple quantum, IPAP for decoupling of $J_{C'C\alpha}$

CON, multiple quantum, IPAP for decoupling of $J_{C'C\alpha}$

Why no protons?

For Cu(II) no NH signals detectable within 11Å radius sphere around the metal!

Monomeric SOD: 152 amino acids

Bermel, Bertini, Felli, Kümmerle, Pierattelli, JACS, 2003

COCa MQ experiment

In collaboration with

2D COCa MQ correlation experiment on 2.5mM ²H,¹³C,¹⁵N,labelled SOD Dimer in reduced state, measured on a *Bruker 500MHz Dual* ¹³C{¹H} *CryoProbe*[™].

In collaboration with

Any further advantages?

Increased molecular size: transverse relaxation increased longitudinal relaxation decreased

CC transfer through NOE will become competitive with transfer through scalar couplings

In collaboration with

CC NOESY experiment

In collaboration with

Buildup of cross peak intensity in NOESY spectra simulation for correlation times of 5, 10, 15, 20 ns

In collaboration with I. Bertini, I.C. Felli,

R. Pierattelli,

CERM, Florence, Italy

RT TXI 700MHz

-10 ppm

¹³C-NOESY experiment

•13C-NOESY data published for large proteins only

•No correlation peaks were observed on ubiquitin samples, neither for ¹H- or ²H labeled samples (H. Kovacs, K. Pervushin et. al., unpublished results)

13C-NOESY

experiment on 2.5mM ²H,¹³C,¹⁵N,-labelled SOD Dimer in reduced state, measured on a *Bruker 500MHz Dual* ¹³C{¹H} CryoProbeTM.

NOESY mixing time: 800ms

In collaboration with

I. Bertini, I.C. Felli, R. Pierattelli, CERM, Florence, Italy

ppm

13C-NOESY experiment on 2.5mM ²H,¹³C,¹⁵N,labelled SOD Dimer in reduced state, measured on a *Bruker 500MHz Dual* ¹³C{¹H} *CryoProbe*[™].

NOESY mixing time: 800ms

In collaboration with I. Bertini, I.C. Felli, R. Pierattelli, CERM, Florence, Italy

COCAMQ

NOESY 300ms

NOESY 800ms

 $^{13}C - ^{13}C NOESY zoom$

Table 1. Residues for Which the C'-Cα Connectivity Was Identified in the ¹³C Observed 2D Experiments^a

	residue no.	C'-Cu(II) (Å)	Cα-Cu(II) (Å)		residue no.	C'-Cu(II) (Å)	$\begin{array}{c} C\alpha-Cu(II)\\ (A)\end{array}$
1	44	5.3 - 6.0	6.0-6.6		121	9.8 - 10.2	9.5-9.8
)	45	4.6 - 5.7	4.9 - 6.4		123	8.7 - 9.7	9.5 - 10.5
1	46	4.3 - 5.1	4.0 - 4.7		124	9.1 - 10.2	7.7 - 8.8
1	47	5.6 - 6.1	5.9-6.6		133	9.6-11.4	10.3-12.3
1	48^{c}	7.3-7.6	5.8 - 6.1		134	9.5-11.3	9.9-11.6
	62	5.7 - 7.0	6 - 0 - 7.8	b	136	6.4 - 8.4	7.9-99
	64	8.8 - 10.0	8.2 - 9.2	b	137	5.2 - 6.8	5.2 - 6.9
	72	10.2 - 11.5	10.5 - 11.9		139°	8.8 - 10.0	9.1-10.2
	80	10.2 - 11.9	9.8 - 11.4	b	141	7.8 - 8.6	8.5-9.5
1	83	8.2 - 8.9	7.4 - 8.2	b	142	7.4 - 8.4	8.2 - 9.3
	85	8.0 - 8.8	8.6-9.5	b	143	7.9 - 9.1	6.6-7.8
1	86	10.0 - 11.0	8.9 - 9.8		144	9.7-11.2	9.5 - 10.8
	116	7.6 - 9.0	8.9 - 10.2		145 ^c	8.2 - 9.9	9.2 - 10.9
1	118	4.2 - 5.9	4.7 - 6.0		146 ^c	9.6-11.2	8.4-10.0
b	119	5.2 - 6.8	5.2 - 7.2		147	10.6 - 12.4	10.6 - 12.3
b	120	7.4 - 7.8	5.9 - 6.4				

¹H -¹⁵N H SQ C

¹³C - ¹⁵N heteronuce lar correlation spectrum

3D CCCO-IPAP

¹³C detection: assignment strategy

Schematic assignment & walkthrough

PRO 74

LYS 75

par: copy param. files from 🗙						
C_CACO	C_CACO_IA	C_CACO_S3	C_CANCOLIA3D	C_CANCO_IA3D		
C_CANCO_IA3D.2	C_CAN_IASQ	C_CAN_MQ	C_CAN_MQ.2	C_CBCACON_IA3D		
C_CBCACO_IA3D	C_CBCACO_S33D	C_CBCANCO_IA3D	C_CCCON_IA3D	C_CCCO_IA3D		
C_CCCO_S33D	C_CCFLOPSY16	C_CCFLOPSY16_CT	C_CCFLOPSY16_CTIA	C_CCFLOPSY16_IA		
C_CCNOESY	C_CCNOESY2	C_CCNOESY_CT	C_COCA	C_COCA_IA		
C_COCA_MQ	C_COCA_MQ.2	C_CON_IASQ	C_CON_MQ	C_CON_MQIA		
C_CON_SQ	C_COSY	C_COSY2_CT	C_COSY_CT	C_HACACO_3D		
C_HCACO_3D	C_HCACO_IA3D	C_HCACO_S33D	C_HCANCOI_IA3D	C_HCANCO_IA3D		
C_HCAN_3D	C_HCAN_IA3D	C_HCBCACO_IA3D	C_HCBCACO_S33D	C_HCBCAN_IA3D		
C_HCBCA_IA3D	C_HCCFLOPSY16_3D	C_HNCACO_IA3D	C_HNCACO_S33D	C_HNCA_IA3D		
C_HNCOCA2_IA3D	C_HNCOCA_IA3D	C_HNCO_IA3D				

Copy all	Сору	

More Info... Cancel

Acknowledgement

Helena Kovacs

Rainer Kümmerle