

CryoProbesat work

Detlef Moskau&Rainer Kümmerle

Bruker Biospin AG, Fällanden,Switzerland

- Water Suppression / Radiation Damping Effects
- Tips & Tricks for Gradients
- Salt Tolerance

Water Suppression:

- rules, tricks etc... we know from standard probes also apply
- main difference to standard probe:

•enhanced radiation damping water flipback-pulses need more attention removing trim pulse of first INEPT-step might give best suppression •water hump might be broader

use Shigemi tube

- Trim pulse 'p28':

•either not needed or best suppression for values of 50- 100usec (?)

Radiation Damping Effects

- •precessing magnetization induces a voltage in RF coil •this is our NMR signal…
	- … but the resulting current in the RF coil is nothing else than a RF pulse!
- •induced pulse has constant phase relationship to magnetization:
- •induced pulse turns the precessing magnetization back towards +z axis
- \bullet intense signals have short apparent ${\sf T}_2$ relaxation times

H₂O FID after 10° pulse @ 700 MHz

H₂O signal after 10° pulse @ 700 MHz

600 MHz SEI ¹H pulse calibration

Polymer sample in TCE- $d₂$ main signal: CH₂ backbone $T = 120^{\circ}$ C

600 MHz SEI ¹H pulse calibration

700 MHz TXI ¹H pulse calibration

WET - Water suppression

 1 **H** $/$ **G**

- adjust the pulse power for the <u>first</u> selective pulse to compensate for radiation damping: up to 8dB difference from the theoretical value
- use stronger gradients and / or
- gradient shapes with higher integral than SINE example: chirp with 10% smoothing

suppression techniques: tips & tricks

Magnetization destruction based methods: classical & binomial WATERGATE, excitation sculpting

- use stronger gradients and / or
- gradient shapes with higher integral than SINE example: chirp with 10% smoothing
- for highest suppression capacity: DPFGSE double binomial watergate "w5" , zggpw5 excitation sculpting "es" , zgesgp

suppression techniques: tips & tricks

- use stronger RF irradiation (up to 100 Hz) - use weak gradient prior to read pulse (3%)

- use volume selection to reduce solvent hump

Tips & Tricks for Gradients

- Alternatives for 'SINE.100'
- GRASP: lock phase and artifacts

Tips & tricks for gradients

Tips & tricks for gradients

Tips & tricks for gradients

- Alternatives for 'SINE.100'
- GRASP: lock phase and artifacts

Artifacts due to wrong lock phase

WATERGATE-experiment

The lock channel can be understood as a , complete independant spectrometer within the spectrometer':

The lock receiver has two quadrature channels:

- The absorption signal is used for field homogenisation
- The signal intensity is a measure for the field homogeneity:

- The dispersion signal is used for field stabilisation
- The position of the zero-crossing of the signal is permanently checked
- Determination of the zero-crossing frequency is more sensitive than determination of the frequency at maximum peak position

- If the lock phase is not adjusted correctly, absorption and dispersion signals will be mixed
- Non-pure phases will result in:
	- imperfect field homogenisation (shimming)
	- imperfect field stabilisation
	- field shifts during experiment using pulsed field gradients

CryoProbeTM Salt Tolerance

Signal-to-noise ratio (S/N) and noise sources

$$
\frac{S}{N} \sim \frac{1}{\sqrt{R_{\text{Coil}} (T_{\text{Coil}} + T_{\text{Preamp}}) + R_{\text{Sample}} (T_{\text{Sample}} + T_{\text{Preamp}})}}
$$

• For
$$
R_{\text{coil}} (T_{\text{coil}} + T_{\text{Preamp}}) >> R_{\text{Sample}} T_{\text{Sample}}
$$

$$
\frac{S}{N} \sim \frac{1}{\sqrt{R_{\text{Coil}} (T_{\text{Coil}} + T_{\text{Preamp}})}}
$$

$$
\bullet
$$
 For $R_{\text{Sample}} T_{\text{Sample}} \gg R_{\text{Coil}} T_{\text{Coil}}$

$$
\frac{S}{N} \sim \frac{1}{\sqrt{R_{Sample}}}
$$

$$
R_{\text{Sample}} \propto \overline{\omega}^2 \sigma r^4
$$

- ω frequency
- σ conductivity
- b sample radius

$$
\sigma \propto \sum_i c_i q_i \lambda_i
$$

 c_i concentration q_i charge λ_i mobility

•Conductivity $= f(salt concentration)$ $=$ f(ion mobility)

 $\sigma \propto \sum_{i} c_i q_i \lambda_i$

•Sample radius

•Frequency

Sample diameter for lossy solvents

Signal-to-noise ratio and Sample Diameter

Sensitivity and Salt Dependence as function of sample diameter Identical Mass in all tubes: Sucrose in D₂O, 600 MHz. TCI CryoProbe

Rel. Sensitivity, Same Sample Amount

Sample Diameter Rel. Volume

? At high salt concentration the same sensitivity can be achieved with less compound

NOTE:

10. this applies only for $R_{Sample}T_{Sample} >> R_{Coif}T_{Coif}$

11. Constant concentration

Sample diameter for lossy solvents

- **If sample noise dominates**
	- **PW shorter with smaller tubes** $PW \sim \sqrt{k_1 R_c + k_2 R_s}$ **PW ~** √**Loss ~ r 2**

For high (> 150 mMol) salt concentration it is better to use smaller diameter tubes

•Conductivity $= f(salt concentration)$ $=$ f(ion mobility)

 $\sigma \propto \sum_{i} c_i q_i \lambda_i$

•Sample radius

•Frequency

Low Conductivity Buffers and Sensitivity for Lossy Samples:

- 4. Buffers with low ion mobility:
	- using large organic molecules instead of small inorganic ions
- 5. For titration both, acid and base, with low ion mobility shall be selected:
	- base: BIS-TRIS propane acid: PINES, MOPS
	- base: TRIS acid: bicine
- 6. Gain:
	- an gain in S/N of up to 50% compared to commonly used buffers

Volker Dötsch et al

Conclusion

Sample Diameter and Sensitivity for Lossy Samples:

- 3. Identical Concentration:
	- 5 mm tubes have inherent best S/N
- 4. Identical Mass:
	- Best S/N for smallest possible tube diameter (limited only by the solubility)
- 5. Frequency:
	- S/N is always higher for higher frequencies but the sensitivity enhancement becomes a function of the salt concentration

Buffer and Sensitivity for Lossy Samples:

Try low conductivity buffers

