Vanderbilt NMR Facilities

Instructions for Setup of 2D Homonuclear Experiments Using TOPSPIN

Index

1.	2D ACQUISITION PREREQUISITES	2
1.1.	1D ¹ H Reference Spectrum	2
1.2.	The 2D Homonuclear ¹ H Experiment	2
1.3.	Processing the 2D Spectrum	4
2.	MAGNITUDE COSY	7
2.1.	Experiment	7
2.2.	Acquisition	7
2.3.	Processing	8
3.	DQF COSY	9
3.1.	Experiment	9
3.2.	Acquisition	9
3.3.	Processing	10
4.	TOCSY	12
4.1.	Experiment	12
4.1. 4.2.	Experiment	12 12
4.1. 4.2. 4.3.	Experiment Acquisition Processing	12 12 13
4.1. 4.2. 4.3. 5.	Experiment	12 12 13 13
 4.1. 4.2. 4.3. 5. 5.1. 	Experiment	12 12 13 13 15
 4.1. 4.2. 4.3. 5. 5.1. 5.2. 	Experiment	12 12 13 15 15
 4.1. 4.2. 4.3. 5. 5.1. 5.2. 5.3. 	Experiment	12 12 13 15 15 15 16
 4.1. 4.2. 4.3. 5. 5.1. 5.2. 5.3. 6. 	Experiment	12 12 13 15 15 15 16 18
 4.1. 4.2. 4.3. 5. 5.1. 5.2. 5.3. 6. 6.1. 	Experiment	12 12 13 15 15 15 16 18
 4.1. 4.2. 4.3. 5. 5.1. 5.2. 5.3. 6. 6.1. 6.2. 	Experiment	12 12 13 15 15 16 18 18 19

1. 2D Acquisition Prerequisites

The common procedures involved in the setup and processing of 2D homonuclear experiments are described in this section. Specifics for each homonuclear experiment have been provided in separate section.

1.1. 1D ¹H Reference Spectrum

- Calibrate the 90° pulse (see manual: "Instructions for 90° Pulse Width Determination" for details)
- Acquire a 1D ¹H reference spectrum (**rpar AAA_proton.MV all**, lock, tune, and shim see separate Topspin manuals).
- Transform and reference the spectrum.
- Check for lineshape and spectral quality. This spectrum may be used for the projections in the 2D homonuclear plot.
- Note the value for receiver gain, RG.
- Note the spectrum reference, type **SR**.
- Optional: Adjustment of parameters SW and O1
 - Using the cursors, select the region of the 1D spectrum containing all your signals. Include a minimum of 0.5 ppm of baseline on either side of the spectrum.

◦ Define **SW** and **O1** by selecting the icon [▶] from the toolbar. (Fig. 1.1)

<u>F</u> ile	<u>E</u> dit	⊻iew	<u>S</u> pect	romet	er <u>P</u> r	oces	sing	<u>A</u> n	alysi	s <u>O</u> p	otion	S	<u>W</u> indow	Help						
0 0	N 🖪 🖞	9 8 8	è 🗒 2	d 3d 🕂	∿ √	، ست ،	「壯	4	ĥ∕p [∐	뿟ᅢ			। 💿 🕪 📅	· 🖽 🕹	🥵 🗠 🕇	mpCont <mark>R</mark>	outing		1 2	3 🕨
*2 /	2 *8 /	/8 🗢 🕉	E 🕅 🛛	⊕ @	QQ	<u>က</u>	→ <mark>I</mark>	↔ ·	→ ₩-	-+ 1	F ‡	Ŧ	LOCK TUN	SHIM	1D1H_AC	Q 1D_PRO	EFP	ASED <mark>I</mark>	PLOT MUL	TIZG H
																			Figur	e 1 .1

o Optional: Re-acquire the 1D reference spectrum with these new values.

1.2. The 2D Homonuclear ¹H Experiment

- Samples in organic solvents: The default parameters starting with "AA_..." in their name typically produce usable spectra without modification.
- *Aqueous samples* will require customization of some experimental parameters. All experiment specific parameters (ASED) must be double checked, and set correctly, for the experiment to yield proper data.
- Check the PulseProg tab or parameter tables (page 18 ff) for information on specific parameter settings.

1.2.1. ASED (acquisition parameters specific to the experiment selected)

- Type ased or click on the button in the toolbar (Fig. 1.2).
- Click on the **getprosol** icon (Fig. 1.2). This command loads the appropriate pulses and gradient delays from a configuration table.

- These values are typically useable for organic solvents.
- For aqueous solutions: Type: getprosol 1H <P1>us <PL1>db; using the pulse width <P1> and the corresponding pulse power <PL1> as determined in section 1.1. This command recalculates all the proton pulses according to the calibrated values entered.
- Verify the correctness of <u>all</u> parameters in this window.

Figure 1.2

1.2.2. EDA (complete acquisition parameter list)

- Type eda, or click on A in the ASED window toolbar. (Fig. 1.2)
- Update SW and O1, as determined in section 1.1.
- **RG** equals value from the reference proton experiment as determined in section 1.1.
- Check the parameters for correctness, as outlined in the directions for the specific 2D experiment. The Selection Tabs, listed in the left column of the window, are linked to the associated parameters. (Fig. 1.3)

Time Estimate and Adjustment for 2D Experiment:

- To calculate the experiment time click on the clock in the toolbar ¹ or type **expt**.
- Note: either changing TD(F1), or NS, will affect the experiment time most.
- Changing TD(F1) directly affects the resolution in the indirect dimension, NS the signal intensity.
- Acquire the experiment with zg or select the ▶ button in the toolbar.
- 2D experiments can be stopped prematurely bye either command **stop** or **halt**, affecting the digital resolution in the indirect dimension.

Eile Edit ⊻iew <u>Spectrometer</u> Processing Analysis Options Window Help								
	B 1d 3d 4 - ☆ 止 ± H	: ↘ % 比 央 痐 ■		W- 특 [] TempCont Routing				
Spactrum ProcPars AcquiPars Title PulseProg Peaks Integrals Sample Structure Fid								
∽ л Ѕ ▮								
Experiment		F2	F1	Frequency axis	-			
Width	Experiment		1					
Nucleus	PULPROG =	cosygpmtph		7 Current pulse program				
Durations	AQ_mod =	DQD		Acquisition mode	=			
Power	FNMODE =	0010		 Acquisition mode for 2D/3D 				
Program		2048	1024	Size of fid				
Probe	TNS =	2	4	# of scans				
Lists	TDO	16	e.	# of dummy scans				
Wobble		1		Loop count for tau				
Lock	width + SW/[nnm] =	13 0174	12 0174	Spactral width				
Automation	SWH [H=1 -	6510.42	6510.425	Spectral width				
Hear	IN 010 [c] -	0010.42	0.00015360	Increment for delay D0 (E1)				
Routing	₩_010 [3] =		1	# of delays in pulse program for D0 (E1)				
		0 1572264	0.0796421	Acquisition time				
		2 179914	6 25 7 9 2 7	Fid resolution				
		125000.00	10.337037	Filter width				
	Receiver	123000.00		Filter widen				
	RG =	128	1	Receiver gain				
	DW [us] =	76.800	4	Dwell time				
	DWOV [us] =	3.200		Oversampling dwell time				
	DECIM =	24		Decimation rate of digital filter				
	DIGTYP =	HADC+		V Digitizer type				
	DIGMOD =	digital		V Digitization mode				
	DR =	18	1	Digitizer resolution				
	DE fus1 =	6.00		Pre-scap delay				
	NBI =	1		Number of blocks (of acquisition memory)				
	HPPRCN =	normal		Preamplifier gain				
	PRGAIN =	high		High power preamplifier gain				
	DODMODE =	add		Digital guad detection mode				
	PH ref [degree] =	0.000		Beceiver phase correction				
	OVERELW -	ignore		Accumulation overflow checking				
	FROLO3N =	0	T	Observe frequency shift reduction				
	Nucleus 1	<u> </u>		and the mediately sufficient of				
	NUC1 =	1H Edit	1H	Observe nucleus				
	★ 01 [Hz] =	2500.65	2500.65	Transmitter frequency offset				
	O1P[ppm] =	5.000	5.000	Transmitter frequency offset				
	SEO1 (MHz1 =	500.1325006	500 1325006	Transmitter frequency				
	BE1 [MH2] -	500.1320000	500 1300000	Resis transmitter frequency				
	Nucleus 2	300.1300000	500.1500000	basic cransmitter frequency				
	NUC2 =	off Edit	1	2nd nucleus	-			
L				And the state of the set of the s				

1.3. Processing the 2D Spectrum

1.3.1. RSER (command line)

This command extracts single FID's out of a nD dataset. Without further argument, the 1D FID will be stored in the ~TEMP directory.

Example: **rser 1 99** extracts the first FID of an nD and saves the FID in experiment # 99 of the current project (any argument numbers are possible)

1.3.2. EDP (processing parameter list)

- Type edp, or select the "ProcPars" tab. (Fig. 1.4)
- Check the parameters for correctness, as outlined for each specific 2D experiment (page 18 ff).
- Use "xfb" to transform both dimensions of the spectrum.
- Phase the spectrum according to the directions for each specific 2D experiment (chapters 2-5)
- Use **abs1** and **abs2** to correct the baseline of the spectrum.
- Using **xfb n** to transform the spectrum deletes the imaginary parts of the spectrum. The resulting data is only ¼ of the original data size, but the spectrum can't be phased without re-processing using **xfb** alone.

1.3.3. Contour Level Adjustment

Adjust the contour levels to improve visibility. Type the following command sequence:

nlev 21 (number of levels displayed)

levcalc (calculate contour level setting)

<u>File Edit View Spectrometer Processing Analysis Options Window Help</u>							
	· 🗈 🕄 1d 3d 🤸 🗄 🏦	× 1 1 1 # #	I 💿 🖸 \land 🕨 🔳	💿 ₩	~ 중 🖽 TempCont Routing		
*2 /2 *8 /8 \$ *	* 王 夫 ½ 🖣 🖬 🗄 🍳	0 0 0 h 🛄 +	→ + + + & \$	y R	LOCK TUNE SHIM 1D1H_ACQ 1D_PROC EFP ASED PLOT MULTIZE HALT		
Spectrum		le PulseProg	Peaks Integrals	Sa	ample Structure Fid		
S B							
Reference	1	F2	F1		Frequency axis		
Window	Reference	12	11		Trequency axis		
Phase	→SI =	2048	1024		Size of real spectrum		
Baseline	SF [MHz] =	500.1300017	500.1300017		Spectrometer frequency		
Fourier	OFFSET [ppm] =	11.505	11.505		Low field limit of spectrum		
Peak	🕁 SR [Hz] =	1.68	1.68		Spectrum reference frequency		
Miscellaneous	HZpPT [Hz] =	3.178914	6.357829		Spectral resolution		
llear	Window function						
	WDW =	QSINE	▼ QSINE	-	Window functions for trf, xfb,		
	LB [Hz] =	0.30	0.30		Line broadening for em		
	GB =	0	0.1		Gaussian max. position for gm 0 <gb<1 Sine bell shift SSB (0,1,2,)</gb<1 		
	SSB =	2	2				
	TM1 =	0	0.1		Left limit for tm 0 <tm1<1< td=""></tm1<1<>		
	TM2 =	0	0.9		Right limit for tm 0 <tm2<1< td=""></tm2<1<>		
	Phase correction						
	PHC0 [degree] =	21.047	90.000 -180.000		Oth order correction for pk		
	PHC1 [degree] =	98.400			1st order correction for pk		
	+PH_mod =	pk	▼ pk	-	Phasing modes for trf, xfb,		
	Baseline correction						
	ABSG =	5	5		Degree of polynomial for abs (05)		
	ABSF1 [ppm] =	1000.000	1000.000		Left limit for absf		
	ABSF2 [ppm] =	-1000.000	-1000.000		Right limit for absf		
	BCFW [ppm] =	1.000	1.000		Filter width for bc (sfil/qfil)		
	COROFFS [Hz] =	0.00	0.00		Correction offset for BC_MOD=spol etc.		
	BC_mod =	no	▼ no	-	Fid baseline modes for em, ft, xfb,		
	Fourier transform						
	TDeff =	0	0		# of fid data points used by ft		
	STSR =	0	0		First output point of strip transform		
	STSI =	0	0		Total # of output points of strip transform		
	ME_mod =	no	▼ no	-	Linear prediction for ft, xfb,		
	NCOEF =	0	0		# of LP coefficients		
	LPBIN =	0	0		# of output points for LP		
	TD.6	0			💌 i se u construir d'a companya de la companya de		

1.3.4. Projections

To set the 1D projections first select the icon . (Fig. 1.4)

- Click the right mouse button inside the F2 projection and select "External Projection".
- Change the EXPNO to that of the reference spectrum collected in "2D Acquisition Prerequisites" (Section 1.1).
- Repeat the process for F1, if desired.

1.3.5. Check Data in the Indirect Dimension

Use **xf2** to transform the first dimension separately allowing for closer inspection of the acquired data in the indirect dimension (Fig. 1.6). Examine the spectrum for the presence of truncation, artifacts, or whether the experiment has adequate signal. This also helps in the selection of appropriate window functions. **xf1** will Fourier transform the spectrum in the indirect dimension (Fig. 1.7). Alternatively **xfb** can be used to process both dimensions again.

2. Magnitude COSY

2.1. Experiment

- Run a 1D proton reference experiment (see Section 1.1)
- In a new experiment, use facility default parameters ("AA_COSY-mag.MV"; rpar AA_COSY-mag.MV all)
- Users with aqueous samples will need to customize the experimental parameters. Check the **PulseProg** tab for directions indicating which parameter settings to use.

2.2. Acquisition

2.2.1. ASED (experiment specific acquisition parameters)

- Click on the getprosol icon
- Verify the correctness of all parameters in this window.
- For aqueous solutions: Type: getprosol 1H <P1>us <PL1>db; inserting the values from section 1.2.1.

2.2.2. EDA (complete acquisition parameter list)

Headings from the left column in the EDA window are linked to the parameters listed in **bold**. Check the following parameters in this window:

Experiment Tab:	• AQ_mod = DQD						
	• FNMODE = QF						
	• TD = 2k for F2, and 512 for F1						
	• NS = 4 (or multiples of 4)						
	• DS = 8						
Width Tab:	• Update SW. If using non-default values, copy and paste from the reference experiment.						
	• ND010 = 1						
Receiver Tab:	Check RG. Use the same value as in the reference spectrum.						
Nucleus Tab:	• Update O1 . If using a non-default value, copy and paste from the 1D reference spectrum.						

Acquire the experiment with **zg** or select the **b** button in the toolbar.

2.3. Processing

2.3.1. EDP Processing Parameters		(type edp , or select the ProcPars tab)					
Reference Tab:	• SI = 1k for F1 and F2						
	• SR = value copy and paste from the 1D reference spectrum.						
Window Tab:	 WDW = QSINE for F1 and F2 						
	• SSB = 0 for F1 and F2						
Phase Tab: • PH_MOD = NO for F2, MC for F1							

2.3.2. Process Spectrum

- Xfb n to transform both dimensions.
- Adjust the contour levels to improve visibility (see section 1.3.2)
- Set the projections (see section 1.3.3)
- Use **abs1** and **abs2** to correct the baseline of the spectrum.
- The spectrum may be symmetrized with the **sym** command. Use this command with caution. It will alter the dataset, real peaks may be removed or new peaks added.

3. DQF COSY

3.1. Experiment

- Run a 1D proton reference experiment (see Section 1.1)
- In a new experiment, use facility default parameters ("AA_COSY-dqf.MV"; rpar AA_COSY-dqf.MV all)
- Users with aqueous samples will need to customize the experimental parameters. Check the **PulseProg** tab for directions indicating which parameter settings to use.

3.2. Acquisition

3.2.1. ASED (experiment specific acquisition parameters)

- Click on the getprosol icon
- Verify the correctness of all parameters in this window.
- For aqueous solutions: Type: getprosol 1H <P1>us <PL1>db; inserting the values from section 1.2.1.

3.2.2. EDA (complete acquisition parameter list)

Headings from the left column in the EDA window are linked to the parameters listed in **bold**. Check the following parameters in this window:

Experiment Tab: AQ_mod = DQD
FNMODE = TPPI-STATES
TD = 2k for F2, and 1k for F1
NS = 2 (or multiples of 2)
DS = 16
Width Tab: Update SW. If using non-default values, copy and paste from the reference experiment.
ND010 = 1
Receiver Tab: Check RG. Use the same value as in the reference spectrum.
Update O1. If using a non-default value, copy and paste from the 1D reference spectrum.

Acquire the experiment with **zg** or select the ► button in the toolbar. GS may be used to further optimize the parameters after the start of the acquisition.

3.3. Processing

3.3.1. EDP Processing Parameters (type **edp**, or select the ProcPars tab)

Reference Tab: • SI = 1k for F1 and F2

• **SR** = value copy and paste from the 1D reference spectrum.

Window Tab: • WDW = QSINE for F1 and F2

• SSB = 2 for F1 and F2

Phase Tab: • PH_MOD = pk for F2 and F1

- F2: determine phase correction (3.3.3)
- F1: PHC0, PHC1, FCOR see table 6.1 or pulse program

3.3.2. Processing Spectrum

- xfb to transform both dimensions.
- Adjust the contour levels to improve visibility (see section 1.3.2).
- Set the reference projection (see section 1.3.3).
- Use **abs1** and **abs2** to correct the baseline of the spectrum.

3.3.3. Phasing Spectrum

- Enter the 2D phase mode by selecting the icon
- In the spectral window, right click on a single peak in a set of cross peaks in the downfield region.
 Expansion may be necessary. Select "Add" (Fig. 3.1). Add 2 or more peaks in the middle to high-field range. Be sure to refer to the same peak of each multiplet (Fig. 3.2).
- Click on the row icon "R" to phase the F2 dimension. Select the "0" icon to apply zero order phase correction to the top window, and the "1" icon to apply 1st order phase correction to the lower windows. Insets in the figures below show the selected contour profiles before and after phasing (Figs. 3.3 -> 3.4).
 - The spectral peaks should be anti-phase. (Figs. 3.2 and 3.4)
- Repeat this process for the "columns", using the "C" icon to phase the F1 dimension (Fig. 3.1). Selection of different peaks may be necessary in order to correct the phasing in F1.

3.3.4. General Remarks:

- The Double Quantum Filtered (DQF) COSY improves the peak resolution near the diagonal, but results in a 2-fold loss of signal intensity compared to the magnitude COSY.
- It is a good choice for coupling constant determination.
- A correctly phased DQF COSY will be purely absorptive. Both cross-peaks and diagonal multiplets have the same anti-phase absorption character. (Fig. 3.2)

4. TOCSY

4.1. Experiment

- Run a 1D proton reference experiment. (see Section 1.1)
- In a new experiment, use facility default parameters ("AA_TOCSY-dip.MV"; rpar AA_TOCSY-dip.MV all)
- Users with aqueous samples will need to customize the experimental parameters. Check the **PulseProg** tab for directions indicating which parameter settings to use.

4.2. Acquisition

4.2.1. ASED (experiment specific acquisition parameters)

- Click on the getprosol icon
- Verify the correctness of all parameters in this window.
- For aqueous solutions: Type: getprosol 1H <P1>us <PL1>db; inserting the values from section 1.2.1.
- Use the default values for the TOCSY spin-lock pulse parameters, **P6 and PL10**. These parameters are field dependent.
- The mixing time, **D9 = 80 120ms** (~20ms / transfer step).

4.2.2. EDA (complete acquisition parameter list)

Headings from the left column in the EDA window are linked to the parameters listed in **bold**. Check the following parameters in this window:

Experiment $ap: • AQ mod = DQ$

- FNMODE = Echo-Antiecho
- TD = 2k for F2, and 512 for F1
- NS = 8 (or multiples of 8)
- DS = 16
- Width Tab: Update SW. If using non-default values, copy and paste from the reference experiment.
 - ND010 = 1

Receiver Tab: • Check RG

Nucleus Tab: • Update **O1**. If using a non-default value, copy and paste from the 1D reference spectrum.

Acquire the experiment with **zg** or select the ► button in the toolbar. GS may be used to further optimize the parameters after the start of the acquisition.

4.3. Processing

4.3.1. EDP Processing Parameters (type **edp**, or select the **ProcPars** tab)

Reference Tab: • SI = 1k for F1 and F2

• **SR** = value copy and pasted from the 1D reference spectrum.

Window Tab: • WDW = QSINE for F1 and F2

• SSB = 2 for both, F1 and F2

Phase Tab: • **PH_MOD = pk** for both, F2 and F1

- F2: determine phase correction (4.3.3)
- F1: PHC0, PHC1, FCOR see table 6.2 or pulse program

4.3.2. Processing Spectrum

- xfb to transform both dimensions.
- Adjust the contour levels to improve visibility (see section 1.3.2)
- Set the projections (see section 1.3.3)
- Use **abs1** and **abs2** to correct the baseline of the spectrum.

4.3.3. Phasing Spectrum

- Enter the 2D phase mode by selecting the icon
- In the spectrum window, right click on a single, downfield cross-peak and select "Add" (Fig. 4.1). Add 2 or more other peaks moving towards the upfield side of the spectrum.
- Click on the row icon "R" to phase the F2 dimension. Select the "0" icon to apply zero order phase correction to the top window, and the "1" icon to apply 1st order phase correction to the lower windows. Insets in the figures below show the selected contour profiles before and after being phased positive (Fig. 4.2 → 4.3)
- Repeat this process for the "columns", using the "C" icon to phase the F1 dimension if necessary. (Fig. 4.1)

4.3.4. General Remarks:

Rule of Thumb: Mixing Time, $T_m = 12$ to 20 ms per transfer step. Short spin-lock durations of 20 ms will produce a spectrum similar to the COSY. Longer spin-lock times will yield the desired TOCSY spectrum.

The advantages of the TOCSY spectrum are:

- · Connect whole spin systems
- · Sensitive correlation experiment
- All peaks are in-phase
- Narrow diagonal peaks

5. NOESY

5.1. Experiment

- Run a 1D proton reference experiment (see Section 1.1).
- In a new experiment, use facility default parameters ("AA_NOESY-ph.MV"; rpar AA_NOESY-ph.MV all)
- Users with aqueous samples will need to customize the experimental parameters. Check the **PulseProg** tab for directions indicating which parameter settings to use.

5.2. Acquisition

5.2.1. ASED (experiment specific acquisition parameters)

- Click on the getprosol icon
- Verify the correctness of all parameters in this window.
- For aqueous solutions: Type: getprosol 1H <P1>us <PL1>db; inserting the values from section 1.2.1.
- The mixing time, **D8 = 40 1000 ms** (SMF: 600 ms, CSB: 80-150 ms).

5.2.2. EDA (complete acquisition parameter list)

Headings from the left column in the EDA window are linked to the parameters listed in **bold**. Check the following parameters in this window:

Experiment Tab: • AQ_mod = DQD

- FNMODE = TPPI-States
- TD = 2k for F2, and 512 for F1
- NS = 2 (or multiples of 2)
- DS = 16
- Width Tab: Update **SW**. If using non-default values, copy and paste from the reference experiment.
- ND010 = 1
- Receiver Tab: Check RG
- Nucleus Tab: Update **O1**. If using a non-default value, copy and paste from the 1D reference spectrum.

Acquire the experiment with **zg** or select the ► button in the toolbar. GS may be used to further optimize the parameters after the start of the acquisition.

5.3. Processing

5.3.1. EDP Processing Parameters (type **edp**, or select the **ProcPars** tab)

Type **edp**, or select the **ProcPars** tab.

Reference Tab:	• SI = 1k for F1 and F2					
	• SR = value copy and pasted from the 1D reference spectrum.					
Window Tab:	 WDW = QSINE for F1 and F2 					
	• SSB = 2 for F1 and F2					
Phase Tab:	 PH_MOD = pk for F2 and F1 					
	F2: determine phase correction (see 5.3.3)					
	• F1: PHC0 = 90, PHC1 = -180; FCOR(F1) = 1					

5.3.2. Process Spectrum

- **xfb** to transform both dimensions.
- Adjust the contour levels to improve visibility (see section 1.3.2)
- Set the reference projections (see section 1.3.3)
- Use abs1 and abs2 to correct the baseline of the spectrum.

5.3.3. Phase Spectrum Using the First Increment

- Start with the directly detected dimension, F2. Type "rser 1 99"; where 99 represents a location for processing the file (procno).
- Phase the increment displayed, selecting the icon (Fig. 5.1)
 - Small molecules: phase 1st increment negative (down)
 - Large molecules: phase 1st increment positive (up, Fig. 5.1)
- Once phased, select "save as 2D" and return

5.3.4. Phase 2D Spectrum interactively

- Enter the 2D phase mode by selecting the icon
- In the spectrum window, right click on a single, downfield cross-peak and select "Add" (Fig. 5.2). Add 2 or more other peaks moving towards the upfield side of the spectrum
- Click on the row icon, "R", to phase the horizontal dimension. Select the "0" icon to apply zero order phase correction, and the "1" icon to apply 1st order phasing. (Fig. 4.2). For small molecules, the phase of the NOE peaks typically is opposite of the diagonal peaks, while molecules > 1-3 kDa produce all positive peaks.
- Insets in the figures 5.3 and 5.4, show the selected contour profiles of a small molecule before and after phasing.

• Repeat this process for the "columns", using the "C" icon to phase the vertical dimension.

5.3.5. General Remarks:

For MW's between 1k and 3 kDa, transient and steady state NOE's approach zero. In this case, the appropriate experiment would be a ROESY.

6. Parameter Tables

6.1. Summary of COSY parameters

NOTE: Changing one parameter might impact others, hence the integrity of all acquisition parameters must be verified. This can be done using the resources found in the pulse sequence description in the **PulseProg** tab, or by requesting help from a facility staff member.

ased parameters

Experiment	Magnitude COSY	Phase Sensitive	Echo/AntiEcho	Water suppression
		DQF COSY	DQF COSY	DQF COSY
Parameter set	AA_COSY-mag.MV	AA_COSY-dqf.MV	AA_COSY-dqfea.MV	AA_COSY-dqfes.MV
Bruker PP name	cosygpqf	cosygpmfph	cosydfetgp.1	cosydfesgpph
Description	No phasing,	Phase sensitive	re more scans than the	Phase sensitive,
	sensitive,	lower S/N than	phase sensitive DQF	water suppression via
	use for connectivity	magnitude COSY,	COSY	excitation sculpting
		measurable coupling		
		constants		
Pulses	P0 = 20° to 90° of P1 ⁽¹⁾	N/A	N/A	SP1 = shaped pulse
				PL9 = presat pwr lvl
P1 @ PL1	P1 (90 [°])	P1 (90 [°])	P1 (90 [°])	P1 (90 [°])
GPNAM1 ⁽²⁾	SMSQ10.100	SMSQ10.100	SMSQ10.100	SMSQ10.100
GPNAM2 ⁽²⁾	SMSQ10.100	SMSQ10.100	SMSQ10.100	SMSQ10.100
GPZ1	10%	30%	30%	31%
GPZ2	10%	30%	30%	11%

(1) For optimal sensitivity, a P0 of 60° is recommended, while of 45° improves the intensity ratios and diagonal streamlining effect with only a moderate loss in signal-to-noise.

(2) SINE.100 may be used as well in these experiments, but is considered less efficient

eda parameters

Bruker PP name	cosygpqf	cosygpmfph	cosydfetgp.1	cosydfesgpph
FnMODE	QF	States, <u>States-TPPI</u> , TPPI	Echo/Anti-Echo	States, <u>States-TPPI</u> , TPPI
TD F2	1024, <u>2048</u> , 4096	1024, <u>2048</u> , 4096	1024, <u>2048</u> , 4096	1024, <u>2048</u> , 4096
TD F1	128, 256, <u>512</u> , 1024	128, 256, <u>512</u> , 1024	128, 256, <u>512</u> , 1024	128, 256, <u>512</u> , 1024
NS (minimum) ⁽³⁾	1	2	8	16
SW F2	= SW F1	= SW F1	= SW F1	= SW F1
ND_010	1	1	1	1

(3) **NS** may be increased by multiples of n (whole numbers)

Underlined values represent common choices

edp parameters

Bruker PP name	cosygpqf	cosygpmfph	cosydfetgp.1	cosydfesgpph
SR (F1=F2)	Value from 1H ref spectrum			
WDW (F1=F2)	QSINE	QSINE	QSINE	QSINE
SSB (F1=F2)	0	2 - 3	2 - 3	2 - 3
PH_mod F2	no	pk	pk	pk
PH_mod F1	mc	<u>pk</u> , no	<u>pk</u> , no	<u>pk</u> , no
F2: PHC0; PHC1	N/A	determine	determine	determine
F1: PHC0; PHC1	N/A	90; -180	determine	90; -180
F1: FCOR	N/A	1	1	1

6.2. Summary of TOCSY parameters

NOTE: Changing one parameter might impact others, hence the integrity of all acquisition parameters must be verified. This can be done using the resources found in the pulse sequence description in the **PulseProg** tab, or by requesting help from a facility staff member.

ased parameters

Experiment	Echo/AntiEcho TOCSY	Echo/Antiecho TOCSY with	Phase Sensitive TOCSY with
		Presaturation	Water Suppression
Parameter set	AA_TOCSY-dipea.MV	AA_TOCSY-dipet.MV	AA_TOCSY-mleves.MV
Bruker PP name	dipsi2etgp	dipsi2etgppr.mv	mlevesgpph
Description	For samples in organic	For samples in D2O,	For aqueous samples,
	solvents,	Uses presaturation,	Water suppression via
	Phase sensitive	Phase sensitive	excitation sculpting,
			Phase sensitive
D9 (mixing)	80-120 ms	80-120 ms	80-120 ms
D20 (1 st z-filter)	20 us	10 us	N/A
D21 (2 nd z-filter)	20 us	10 us	N/A
P1 @ PL1	P1(90 [°])	P1(90 [°])	P1(90 [°])
P6 (spin-lock)	P6(90 [°]) (25-30 us, field	P6(90 [°]) (25-30us, field	P6(90 [°]) (25-30us, field
	dependent) @ PL10	dependent) @ PL10	dependent) @ PL10
PL10	power level for TOCSY spin-	power level for TOCSY spin-	power level for TOCSY spin-
	lock	lock	lock
GPNAM1 ⁽¹⁾	SMSQ10.100	SMSQ10.100	SMSQ10.100
GPNAM2 ⁽¹⁾	SMSQ10.100	SMSQ10.100	SMSQ10.100
GPZ1	10%	30%	31%
GPZ2	10%	30%	11%

(1) SINE.100 may be used as well in these experiments, but is considered less efficient

eda parameters

Bruker PP name	dipsi2etgp	dipsi2etgppr.mv	mlevesgpph
FnMODE	Echo/Anti-Echo	Echo/Antiecho	States, <u>States-TPPI</u> , TPPI
TD F2	1024, <u>2048</u> , 4096	1024, <u>2048</u> , 4096	1024, <u>2048</u> , 4096
TD F1	128, 256, <u>512</u>	128, 256, <u>512</u>	128, 256, <u>512</u>
NS (minimum) ⁽²⁾	8	8	2
SW F2	SW F1	SW F1	SW F1
ND_010	1	1	1

(2) **NS** may be increased by multiples of n (whole numbers)

edp parameters

Bruker PP name	dipsi2etgp	dipsi2etgppr.mv	mlevesgpph
SR (F1=F2)	1H spectral ref.	1H spectral ref.	1H spectral ref.
WDW (F1=F2)	QSINE	QSINE	QSINE
SSB (F1=F2)	2	2	2
PH_mod (F1=F2)	pk	pk	pk
F2: PHC0; PHC1	determine	determine	determine
F1: PHC0; PHC1	determine	determine	180; -180
F1: FCOR	1	1	1

6.3. Summary of NOESY parameters

NOTE: Changing one parameter might impact others, hence the integrity of all acquisition parameters must be verified. This can be done using the resources found in the pulse sequence description in the **PulseProg** tab, or by requesting help from a facility staff member.

ased parameters

- · ·		
Experiment	NOESY	NOESY with Water Suppression
Parameter set	AA_NOESY-ph.MV	AA_NOESY-phes.MV
Bruker PP name	noesygpph	noesyesfpgpphrs
Description	Phase sensitive,	Water suppression using excitation sculpting
	With gradient pulses	and filpback pulse, optimized for radiation
		damping suppression
D8 (mixing)	40-1000 ms (SMF: 600ms, CSB: 100-250ms)	40-1000 ms (SMF: 600ms, CSB: 100-250ms)
P1 @ PL1	P1(90°)	P1(90 [°])
GPNAM1,2 ⁽¹⁾	SMSQ10.100	SMSQ10.100
GPZ0	N/A	2
GPZ1	N/A	50
GPZ1	40.00	31
GPZ2	-40.00	11

(1) SINE.100 may be used as well in the gradient experiments, but is considered less efficient

eda parameters

Bruker PP name	noesygpph	noesygpphpr.mv
FnMODE	TPPI, States, States-TPPI	TPPI, States, States-TPPI,
		Echo/Anti-Echo
TD F2	1024, <u>2048</u> , 4096	1024, <u>2048</u> , 4096
TD F1	128, 256, <u>512</u> , 1024	128, 256, <u>512</u> , 1024
NS (minimum) ⁽²⁾	2	8
SW (F2 = F1)	SW	SW
ND_010	1	1

(2) **NS** may be increased by multiples of n (whole numbers)

edp parameters

Bruker PP name	noesygpph	noesygpphpr.mv
SR (F1=F2)	1H spectral ref.	1H spectral ref.
WDW (F1=F2)	QSINE	QSINE
SSB (F1=F2)	2	2
F2: PHC0; PHC1	determine	determine
F1: PHC0; PHC1	determine	90; -180
F1: FCOR	1	1